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Trends in calculated and measured one-bond reduced spin-spin coupling constants (SSCCs)1K(XH) for
twelve XHn hydrides (X) C, Si, Ge, N, P, As, O, S, Se, F, Cl, Br) are explained using orbital contributions
obtained with the J-OC-PSP (decomposition ofJ into Orbital Contributions using theOrbital Currents and
Partial Spin Polarization) approach. The sign and magnitudes of the orbital contributions can be rationalized
with the help of the Fermi contact spin density distribution, the s-density of an orbital at the nucleus, the
electronegativity, and the polarizability of the central atom X. Partitioning of Fermi contact, the paramagnetic
spin-orbit, the diamagnetic spin-orbit, and the spin dipole terms as well as the total SSCCnK into one-
orbital contributionsnKk and orbital interaction contributionsnKk,l (n, type of SSCC;k andl, indices of occupied
orbitals) reveals that each of the four Ramsey terms adds to the spin-spin coupling mechanism; however,
many of the orbital contributions cancel each other so that, for example, DSO and SD terms make only
negligible contributions to1K(XH). The two types of orbital contributions are associated with two different
transmission mechanisms via the exchange antisymmetry property of the wave function.nKk is the result of
an orbital relaxation mechanism whereasnKk,l is closely related to the concept of steric exchange antisymmetry.
Trends in measured1K(XH) SSCCs can be explained by an interplay of bond and lone pair contributions.
Sign and magnitude of1K(XH) are rationalized by utilizing the nodal behavior of zeroth- and first-order
orbitals. Results are converted into simple Dirac models.

1. Introduction

Indirect scalar NMR spin-spin coupling constants (SSCCs)
are sensitive antennas, which help to describe the electronic
structure, geometry, and conformation of a molecule.1-8 One-
bond coupling constants1J reflect the nature of the chemical
bond; geminal coupling constants2J depend on the bond angle,
and by this they are sensitive to bond angle strain. Also, vicinal
SSCC3J change in a characteristic way with the dihedral angle
of a three-bond fragment, which is exploited in the Karplus
relationships.9-11 In the last 50 years an enormous amount of
experimental SSCCs has been collected and used to describe
electronic, geometric, and conformational features of mole-
cules.1-11 Various attempts have been made to relate the SSCCs
of a molecule to its wave function and the orbitals constituting
the wave function1,12-16 where especially the work carried out
by Contreras and co-workers4,5,13-15 has to be mentioned. Most
of this work focused on the Fermi contact (FC) contribution to
the isotropic scalar SSCC and/or was carried out with semiem-
pirical quantum chemical methods4,5,13,14whereas more recent
work was also done at the ab initio level of theory.15

So far, however, no systematic approach has been presented
to decompose the four Ramsey terms17 of the indirect scalar
SSCCs of a molecule, namely FC, paramagnetic spin-orbit
(PSO), diamagnetic spin-orbit (DSO), and spin dipole (SD)
term, into orbital contributions based on first principles. We
have recently developed a couple-perturbed DFT (CPDFT)
method for calculating NMR SSCCs,18 which leads to surpris-
ingly accurate values for most nuclei combinations.11,19On the
basis of the CPDFT method, we have also developed the
decomposition ofJ into Orbital Contributions usingOrbital
Currents andPartial Spin Polarization (J-OC-OC-PSP )

J-OC-PSP).20 The investigation of orbital currents is relevant
for the understanding of DSO and PSO terms whereas spin
polarization is associated with FC and SD terms. J-OC-PSP
partitions nJ into one-orbital contributionsnJk and orbital
interaction contributionsnJk,l (n, type of SSCC;k andl, orbital
indices). The two types of orbital contributions are associated
with two different coupling transmission mechanisms via the
exchange antisymmetry property of the wave function:nJk is
the result of an orbital relaxation mechanism whereasnJk,l is
closely related to the concept of steric exchange antisymmetry.20

The J-OC-PSP approach can be carried out for any type of
orbital; however, first tests have shown that the use of Boys
localized molecular orbitals (LMOs) facilitates the interpretation
of the calculated orbital contributions. The sum of orbital
contributions is identical to the total SSCC or one of its Ramsey
terms; i.e., each orbital contribution can be directly connected
to the physical basis of the coupling transmission process.

In this work, we will demonstrate the usefulness of J-OC-
PSP by analyzing the one-bond coupling constant of twelve XHn

hydrides (X ) C, Si, Ge, N, P, As, O, S, Se, F, Cl, Br) in
dependence of the atomic numberZ of atom X. Experimental
studies21 have led to opposing trends for the one-bond SSCCs
of group IV hydrides on one hand and those of group V, VI, or
VII hydrides on the other hand. Also, it is not clear why certain
hydrides of the second period do not follow the general trends
within a group. The SSCC of the hydrides of the first period in
the periodic table do not follow the same trend as those of the
hydrides of the second and third periods. And, finally, the sign
of the one-bond SSCC of the higher XH molecules could not
be determined experimentally so far.

Using J-OC-PSP we will demonstrate that irregularities in
the trends of the measured SSCC can be explained as a simple
result of electronegativity and polarizability of the central atom* Corresponding author.
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X. Furthermore, we will introduce the calculation and the pictor-
ial representation of the first-order orbitals and the Fermi contact
spin density distribution as new analytic tools, which make it
possible to reliably determine the sign of all FC orbital contri-
butions so that in turn the sign of the FC term can be predicted.
In a similar way, the signs of the other Ramsey contributions
can be determined and by this also that of the total SSCC. One
might expect that for a one-bond SSCC the bond orbital
contributions are most important. However, in this work we
will show that lone pair contributions are similarly important
and that they actually determine the magnitude of a SSCC.

In section 2 the theory of J-OC-PSP is briefly summarized
and the computational details of this work are described. Results
of the SSCC analysis of the twelve XHn hydrides will be
presented and analyzed in section 3. In section 4, the usefulness
and applicability of J-OC-PSP will be reviewed on the basis of
the results described in this work.

2. Computational Details

The focus of the present work is on electronic processes
responsible for the spin-spin coupling mechanism. Therefore,
we discuss the reduced SSCCK rather than the full SSCCJ to
avoid a dependence on the gyromagnetic ratios of the nuclei
involved.

In CPDFT, the four terms of the reduced indirect SSCCKAB

are given by eqs 1-418

where the DSO, PSO, FC, and SD operator are defined by eqs
5-8:

The position of nucleusN is given by vectorRN, rN ) r - RN,
ε0 is the dielectric constant of the vacuum,R is Sommerfeld’s
fine structure constant,I

)
is the unit tensor, ands is the electron

spin in units ofp. The prefactors enclosed in braces in eqs 5-8
become equal to one in atomic units. Note thathA

FC andhA
SD are

2 × 2 matrixes with respect to the electron spin variables. The

DSO and the PSO terms can be expressed in terms of spin-free
orbitalsφk, and the FC and SD terms are given in terms of spin-
dependent orbitalsψk. Zeroth-order orbitals are denoted by
superscript (0) whereas superscript (B) denotes first-order
orbitals resulting from the perturbation at nucleus B. The indices
of the occupied orbitals will bek, l, ..., those of the virtual
orbitals a, b, .... The vectorsψBk

(B),X and φBk
(B),X summarize the

three first-order orbitals corresponding to the three components
of h(B),X (X ) PSO, FC, SD).

It is straightforward to decompose the reduced SSCCKAB
DSO

into a sum of zeroth-order orbital contributions according to eq
1. For the PSO, FC, and SD terms, an orbital decomposition
can be done starting from the equation for the first-order orbitals
|ψBkσ

(B),X〉:

whereFB
X is the first-order Kohn-Sham (KS) operator.FB

X can
be decomposed as follows:

F̃B
X describes the change of the KS operator due to the first-

order changes of the KS orbitals, i.e., the feedback of the orbitals
on the KS operator. With the definitions

one can representKAB
X as

(C ) -2/3 for X ) PSO,C ) 2/3 for X ) FC and X) SD).
Equations 9-12 are given for canonical zeroth-order orbitals;
however, the extension to localized orbitals is straightforward.

With the help of theF̃lσ
(B),X introduced in eq 10b,Z̃AB

X can be
represented as

From eq 13b, it is obvious thatZ̃AB
X,k is the self-consistent

response of occupied orbitalk to the perturbation by the spin
angular momentum of nucleus B. If one separates the self-
interaction termZ̃AB

X,kk from the genuine interaction termsZ̃AB
X,kl

|ψBkσ
(B),X〉 ) ∑

aσ′

virt 〈ψaσ′
(0)|FB

X|ψkσ
(0)〉
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|ψaσ′
(0)〉 (9)
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wherel * k, KAB
X can be decomposed into20

Here, KAB
X,k covers all processes where the perturbing spin

modifies orbitalk directly. TermKAB
X,kl describes such processes

where the perturbation changes the shape of orbitall, which in
turn changes the first-order KS operator and eventually orbital
k. For magnetic perturbations, this interaction between orbitals
l and k is mediated exclusively by the XC potential. The
interaction is closely related to the concept of steric exchange
repulsion: If two molecules or two molecular groups approach
each other, steric repulsion (exchange repulsion) will hinder
them to penetrate each other. Suppose that orbitalk belongs to
the first molecule (molecular group) and orbitall to the second.
Then exchange repulsion leads to distortions of the orbitals;
i.e., they become polarized. Due to the Pauli principle (i.e., the
antisymmetry of the wave function), the shape of orbitalk is
subjected to the constraint that it has to be orthogonal to orbital
l if k and l are of the same spin. Thus, if orbitall is polarized,
the constraint fork is modified as well and eventually orbitalk
will undergo a change in addition to the change caused by the
perturbation directly. The same applies in the case of a magnetic
perturbation, and therefore, it is justified to relate the two-orbital
terms to steric exchange effects. We note, however, that in the
case of steric repulsion, one considers the interaction between
occupied zeroth-order orbitals whereas in the case of the
magnetic perturbation, a zeroth-order and a first-order orbital
are considered.

We will use the shorthand notation (k r l) for the corre-
sponding contribution to remind us of this. Thus, thoughKAB

X,k

is dominated by one-particle effects,KAB
X,kl accounts for the

steric exchange effects between orbitalsk andl. The first-order
orbital ψk

(B),X depends on which nucleus B is perturbed. When
the perturbing and responding orbital switch their roles, then
the corresponding two-orbital termsKAB

X,krl and KAB
X,rk are not

identical. However, their sum is independent of the nucleus
perturbed and therefore it is better to discuss the combination
term (k,l), i.e.,KA,B

X,(k,l), when describing the interaction between
orbitalsk and l in connection with the coupling mechanism.

Because the perturbations are linearly dependent on the
occupied MOs, one can calculate each orbital contributionKAB

X,k

or KAB
X,kl separately in a consistent manner by restricting orbital

relaxation to certain orbital sets. The sum of all orbital
contributions, evaluated separately for the FC, PSO, DSO, and
SD terms, will lead to the total indirect scalar SSCC.20

The reduced SSCCs of the twelve hydrides investigated in
this work were determined by CPDFT using the procedure
recently described by Sychrovsky´, Gräfenstein, and Cremer.18

All calculations were carried out with the B3LYP hybrid
functional22-24 and Pople’s 6-311G(d,p) basis25 at B3LYP/
6-31G(d,p) geometries determined in this work. Actually, the
6-311G(d,p) basis set is not suited for SSCC calculations
because it was optimized for energy calculations. Nevertheless
it was used in this work because (a) the determination of
qualitative trends rather than high accuracy of the calculated
SSCCs is the goal of this work and (b) the 6-311G(d,p) basis is
defined for all atoms X considered. In some cases calculated
SSCCs were improved by using Dunning’s cc-pVQZ basis set,26

which corresponds to a (12s6p3d2f1g/6s3p2d1f) [5s4p3d2f1g/
4s3p2d1f] contraction where the g-type polarization functions
were deleted because of computational limitations.

A better understanding of the calculated SSCCs is obtained
by analysis of zeroth-order and first-order orbitals, the Fermi
contact spin density distribution, and the spin density at the
position of the coupling nuclei. As zeroth-order orbitals, Boys’
localized MOs27 were used. The localization of core and valence
orbitals was carried out separately to avoid core orbitals with
long valence tails, which lead to artificially exaggerated core
orbital contributions. If X1 and H2 are the coupling nuclei, we
will distinguish in this work between X1-H2 bond (bd), X1
lone pair (lp), X1 core (c), and X1-H3, X1-H4, etc., other
bond (ob) orbitals (see Scheme 1). In this way the constant
1K(X1H2) ) 1K(XH) has sixteen different orbital contributions,
which comprise four one-orbital and twelve two-orbital con-
tributionsx-y, where the latter are contracted to six two-orbital
values (k, l) ) (k r l) + (l r k), as indicated in Scheme 1.
The program J-OC-PSP is set up such a way that with each
one-orbital calculation all corresponding two-orbital contribu-
tions are obtained and the actual calculation of the one-orbital
contributions is handled as a calculation of four different SSCCs.
In this way, one single run leads to all orbital contributions.

According to eqs 3 and 7, the FC term is proportional to the
spin density at the responding nucleus:

where the first-order density, called here theFermi contact spin
density distribution

can be taken for an arbitrary orientation of the perturbing nuclear

SCHEME 1: One- and Two-Orbital Contributions to
SSCCs1K(X1H2)a

a Abbreviations: bd, lp, ob, and c denote bond, lone pair, other bond,
and core LMO. The symbolr points from the perturbed occupied
orbital to the responding occupied orbital.
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spin at B. As the FC term is isotropic, we will orient the nuclear
spin toward the positivez axis. One can splitF(B),FC into one-
and two-orbital contributions in the same way asKAB

FC:

where

It should be noted that the FC perturbation leads to opposite
changes in correspondingR andâ orbitals (we consider closed-
shell systems). Thus, the change of the total density vanishes
in first order, and the changes in the spin density are just twice
the change of theR-spin density. In the following, by the spin
density of an orbital we mean the spin density of a pair of
correspondingR andâ orbitals.

For the analysis of the FC term, also the s-density at nucleus
X1 and nucleusH2 was calculated according to

whereδ(rN) is the Dirac delta function andφl is the localized
bond or lone pair orbital. The productρs

(ll ′)(X,H) ) ρs
l (X) ρs

l′(H)
can be related to the magnitude of the FC term.

Calculations were carried out with COLOGNE 200328 (all
SSCC calculations) and Gaussian 9829 (geometry optimizations).

3. Results and Discussions

In Tables 1-5, the FC, PSO, SD, DSO, and total orbital
contributions to1K(XH) of the twelve XHn hydrides investigated
are listed. In Table 6, the bond orbital or lone pair orbital density
at the coupling nuclei calculated according to eq 19 are given
together with atom polarizability and electronegativity of atom
X of molecules XHn,30 which are used for the analysis of the
calculated orbital contributions. Spin density distributions,
zeroth-order and first-order bond orbitals (perturbation at H2)
are shown in Figures 1-5.

3.1. Sign of the Orbital Contributions to the Fermi
Contact Term. In the following we will discuss the various
orbital contributions to the FC term. They are schematically
indicated in Figure 5.

Bond Orbital Contribution.The bond orbital contribution to
1K(XH) is always positive, which can be understood by
inspection of the zeroth- and first-order localized XH bond
orbital (example CH4: see Figure 1a,b, perturbation at H2). The
bond orbital is formed in zeroth order from a hybrid orbital
and the hydrogen 1s orbital (Figure 1a). At H2, the bond orbital
has a positive sign and the atom C is located in the negative
lobe of the bond orbital. For the case that the magnetic
perturbation is at H2, the first-order localized C-H2 bond orbital
is dominated by an admixture of theσ*(C-H2) orbital. This
leads to an additional nodal plane in the C-H2 bond region
and a sign reversion at H2 (see Figure 1b). The sign of the spin
density at C and H2 can be assessed from the corresponding
signs of zeroth- and first-order orbital (C: -, -; H2:+, -). Hence
a positive sign results for C (dominance ofR-spin density) and
a negative sign for H2 (dominance ofâ-spin density, see Figure
1c), which is in line with the Dirac model shown in Figure 5a.

Assuming that at H2 the nucleus adoptsR-spin, then Fermi
coupling will lead to a dominance ofâ-spin density at the H2

TABLE 1: FC Orbital Contributions to the One-Bond Coupling Constants 1K(XH) in XH n Moleculesa

type 1KFC(bd) 1KFC(lp) 1KFC(ob) 1KFC(c) 1KFC(bd,lp) 1KFC(bd,ob) 1KFC(bd,c) 1KFC(lp,ob) 1KFC(lp,c) 1KFC(ob,c) total

CH4 52.10 -3.43 -0.04 -7.43 -2.36 -0.36 38.48
SiH4 116.08 -12.58 -0.09 -27.34 2.81 -0.59 78.30
GeH4 322.74 -37.87 -0.02 -96.20 6.77 -1.15 194.27
NH3 79.15 -5.16 -4.94 -0.03 -16.35 -9.66 -5.75 2.29 -0.40 -0.33 38.83
PH3 96.37 -19.31 -5.28 -0.04 -34.56 -12.86 -0.40 3.40 -0.80 -0.17 26.35
AsH3 207.47 -52.09 -10.66 -0.02 -98.45 -31.92 2.20 7.92 -1.23 -0.16 23.04
OH2 115.31 -23.98 -5.59 -0.02 -41.92 -10.43 -9.64 4.86 -1.95 -0.29 26.34
SH2 134.75 -38.86 -5.25 -0.03 -65.06 -12.71 -1.31 4.47 -1.55 -0.14 14.32
SeH2 266.51 -86.41 -9.85 0.00 -155.20 -27.28 1.96 9.00 -1.85 -0.12 -3.21
FH 157.73 -55.38 -0.01 -76.45 -12.73 -5.08 8.08
ClH 181.85 -70.43 -0.02 -109.76 -1.73 -2.71 -2.78
BrH 333.73 -137.44 -0.02 -234.44 1.66 -2.71 -39.22

a All K values in SI units [1019 kg m-2 s-2 Å-2] calculated at the CP-DFT/B3LYP/6-311G(d,p) level of theory. The following isotopes are used
in the calculations:13C; 29Si; 73Ge; 15N; 31P; 75As; 17O; 33S; 77Se;19F; 35Cl; 81Br.

TABLE 2: PSO Orbital Contributions to the One-Bond Coupling Constants 1K(XH) in XH n Moleculesa

type 1KPSO(bd) 1KPSO(lp) 1KPSO(ob) 1KPSO(c) 1KPSO(bd,lp) 1KPSO(bd,ob) 1KPSO(bd,c) 1KPSO(lp,ob) 1KPSO(lp,c) 1KPSO(ob,c) total

CH4 -0.19 0.64 0.00 0.08 0.00 0.00 0.54
SiH4 -0.07 -0.04 -0.03 0.01 0.00 0.00 -0.13
GeH4 0.37 -0.64 -0.22 -0.03 0.01 -0.03 -0.54
NH3 -0.73 1.29 1.67 0.00 0.04 0.16 0.00 0.05 0.00 0.00 2.47
PH3 -0.34 0.32 0.97 0.23 -0.08 0.07 -0.01 0.01 0.01 0.03 1.21
AsH3 -0.10 0.06 1.95 0.22 -0.30 0.12 0.01 0.13 0.00 0.03 2.12
OH2 -2.13 7.01 2.22 0.01 0.09 0.22 -0.01 0.32 0.01 0.00 7.74
SH2 -1.27 4.08 1.38 0.45 -0.08 0.13 -0.03 0.11 0.08 0.03 4.89
SeH2 -1.59 6.70 2.39 0.67 -0.33 0.22 -0.02 0.27 0.10 0.04 8.46
FH -5.06 23.68 0.01 0.09 -0.01 0.00 18.72
ClH -2.26 14.22 0.82 -0.03 -0.02 0.12 12.86
BrH -4.32 24.88 1.26 -0.21 -0.06 0.35 21.90

a All K values in SI units [1019 kg m-2 s-2 Å-2] calculated at the CP-DFT/B3LYP/6-311G(d,p) level of theory. The following isotopes are used
in the calculations:13C; 29Si; 73Ge; 15N; 31P; 75As; 17O; 33S; 77Se;19F; 35Cl; 81Br.
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3
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nucleus (i.e., the bond electron next to the H2 nucleus possesses
preferablyâ-spin). Pauli coupling (or electron pair coupling)
will imply that the bonding electron close to the X nucleus will
adopt preferablyR spin, which in turn will lead toâ-spin for
the spin moment of nucleus X via Fermi coupling. According
to the definition of the sign for SSCCs, this leads to a positive
1K(XH, bond) contribution as predicted by the Dirac model for
a one-bond NMR spin-spin coupling mechanism (Figure 5a).

For SiH4 the situation is slightly complicated by an extra-
nodal plane both in the zeroth- and first-order orbitals (Figure
1d,e, perturbation again at H2) but otherwise the orbitals closely
resemble those of CH4. The signs of the zeroth-order Si-H2
bond orbital at Si and H2 are both positive; however, the
corresponding signs of the first-order orbital (Figure 1e) are
positive and negative so that again the spin density is positive
at the heavy atom (Si) and negative at H2. Obviously, the same
sign relationships as observed for the first period atom C are
preserved for the second period atom Si by addition of another
nodal plane between X and H2.

Another regularity of the hybrid orbitals used to establish
bond and lone pair orbitals becomes obvious by inspection of
Figure 2 showing LMOs and spin density distribution of FH
and Figure 3 showing the same for H2X (X ) O and Se). The
X-H2 bond orbital has always H2 in the front lobe whereas X
and other nuclei such as H3, H4, etc. are located in the back
lobe of the hybrid orbital forming the bond orbital. The first-
order orbital gets an additional nodal plane so that the resulting
spin density distribution complies with the Dirac model ir-
respective of the group or period atom X belongs to. All zeroth-
order bond orbitals, all first-order bond orbitals, and conse-
quently all spin density distribution associated with bond X-H2
resemble each other. This, however, will only be true if the

perturbation is at H2 rather than X. The first-order orbitals have
a larger admixture from other XHn orbitals in the latter case,
which makes the analysis somewhat more difficult. However,
again the same sign relationships for orbitals and spin density
result. This reflects the fact that the SSCC in reality as well as
in the CPDFT method is independent of the nucleus perturbed.18

We can conclude that the Dirac model applies to the contribution
of the bond orbital and can be recovered by inspection of the
nodal structure of zero- and first-order bond orbital.

Lone Pair, Other Bond, and Core Orbital Contributions.In
the case of the lone pair orbitals, X and H2, H3, etc. are always
positioned in its back lobe, accordingly the sign of the zeroth-
order orbital is identical at X and H2 (see Figures 2d,e, and 4).
If the perturbation is at H2, the first-order lone pair orbital
resembles closely the first-order bond orbital because again the
σ*(X -H2) orbital makes the largest contribution to this orbital.
Just another nodal plane is added and atom X is shifted into
the back lobe of the orbital in the same way as in the case of
the first-order bond orbital. One can say that the sign relation-
ships of the first-order orbital at the X and H2 nuclei are retained
no matter whether a bond, lone pair, or core orbital is expected.
Hence, the sign of the spin density distribution at the nuclei
considered (Figure 2f) is determined by the corresponding signs
of the zeroth-order orbital. These are equal for lone pair orbitals,
other bond orbitals, and the core orbitals, which means that the
corresponding spin density distributions have negative signs both
at X and H2, thus leading to negative lone pair, other bond,
and core orbital contributions to1K(XH). This is confirmed by
the results of the J-OC-PSP calculations (see Table 1) and can
be considered to be generally true.

One can translate the spin density contribution obtained for
a particular LMO into an extended Dirac model focusing just
on the situation at the nuclei, which is relevant for Fermi
coupling. Taking again the preferred spin of H2 asR (Figure
5b), Fermi coupling will lead to a dominance ofâ-spin at
nucleus H2 as well as in the whole back lobe of the lone pair
orbital, which encompasses the XH bonds, e.g., in XH2 or XH3.
Orbital relaxation in the electron lone pair will imply a
preference ofR-spin in the front lobe (see Figures 2f and 6b).
Because X is located in the back lobe,â spin density is found
at X and Fermi coupling yields a preference forR spin for
nucleus X. An unfavorable interaction between theR spin of
nucleus H2 and nucleus X results and a negative contribution
to 1K(XH) is the consequence (see Figure 5b). The same line
of arguments applies to the other bond orbital contributions and
the core orbital contributions, which are schematically indicated
in Figure 5c,d, respectively. We note in this connection that
the extended Dirac models give only the preferred spin at the
nuclei; however, they do not provide a model for the spin density

TABLE 3: SD Orbital Contributions to the One-Bond Coupling Constants 1K(XH) in XH n Moleculesa

type 1KSD(bd) 1KSD(lp) 1KSD(ob) 1KSD(c) 1KSD(bd,lp) 1KSD(bd,ob) 1KSD(bd,c) 1KSD(lp,ob) 1KSD(lp,c) 1KSD(ob,c) total

CH4 -0.22 0.27 0.00 0.02 0.00 0.00 0.06
SiH4 -0.09 0.08 -0.02 0.02 -0.01 0.00 -0.01
GeH4 -0.20 0.22 0.00 0.03 0.00 0.00 0.06
NH3 -0.75 0.31 0.50 0.00 -0.01 0.02 0.00 0.13 0.00 0.00 0.19
PH3 -0.52 -0.03 0.33 -0.01 -0.04 0.03 -0.02 0.06 0.00 0.01 -0.20
AsH3 -0.88 -0.08 0.63 -0.01 -0.15 0.04 -0.01 0.10 0.00 0.01 -0.35
OH2 -1.76 1.50 0.47 0.00 -0.19 -0.02 0.00 0.23 0.00 0.00 0.22
SH2 -1.19 0.76 0.31 -0.01 -0.10 0.02 -0.04 0.09 0.02 0.01 -0.12
SeH2 -1.83 1.22 0.52 -0.01 -0.30 0.02 -0.03 0.14 0.02 0.01 -0.24
FH -3.07 3.53 0.00 -0.92 0.00 0.00 -0.46
ClH -2.27 2.46 -0.01 -0.28 -0.01 0.01 -0.11
BrH -3.03 4.08 -0.01 -0.57 -0.05 0.07 0.48

a All K values in SI units [1019 kg m-2 s-2 Å-2] calculated at the CP-DFT/B3LYP/6-311G(d,p) level of theory. The following isotopes are used
in the calculations:13C; 29Si; 73Ge; 15N; 31P; 75As; 17O; 33S; 77Se;19F; 35Cl; 81Br.

TABLE 4: DSO Orbital Contributions to the One-Bond
Coupling Constants1K(XH) in XH n Moleculesa

type 1KDSO(bd) 1KDSO(lp) 1KDSO(ob) 1KDSO(c) total

CH4 -0.33 0.43 0.02 0.11
SiH4 -0.07 0.11 0.00 0.04
GeH4 -0.13 0.11 0.00 -0.02
NH3 -0.58 0.21 0.43 0.00 0.05
PH3 -0.12 0.05 0.09 0.00 0.01
AsH3 -0.16 0.07 0.08 -0.01 -0.01
OH2 -0.87 0.61 0.29 -0.02 0.00
SH2 -0.19 0.14 0.06 -0.01 0.01
SeH2 -0.20 0.14 0.05 -0.01 -0.01
FH -1.20 1.24 -0.05 -0.01
ClH -0.31 0.36 -0.01 0.03
BrH -0.24 0.24 -0.01 -0.01

a All K values in SI units [1019 kg m-2 s-2 Å-2] calculated at the
CP-DFT/B3LYP/6-311G(d,p) level of theory. The following isotopes
are used in the calculations:13C; 29Si; 73Ge; 15N; 31P; 75As; 17O; 33S;
77Se;19F; 35Cl; 81Br.
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distribution in the total molecule, which is much more com-
plicated, as can be seen from Figures 1 and 2.

Similarly to the case of the bond orbital contributions, the
same sign relationships are retained when X is a second or third
period atom. Additional nodal planes enter the zeroth-order and
first-order orbitals (Figures 3-5). The sign of the spin density
distribution at the coupling nuclei is quickly determined by
inspection of the phase of the zeroth-order orbitals at these nuclei
(Figures 3-5).

Two-Orbital Interaction Contributions.Two-orbital interac-
tion terms account for a considerable portion of the total FC
terms. If an orbitall gets anR surplus density in some region,
this leads to an extra exchange potential in this region that is
R-attractive andâ-repulsive. This extra potential will enhance
theR density of the other electrons in this region, leading to an
increasedâ density in other regions.

The interaction contributions (k, l) are always made up from
(k r l) and (l r k), where both can have the same or opposite
signs. In the latter case a sign prediction will only be possible
if the relative magnitude of the two contributions can be
estimated.

We consider first the (bd,lp) contribution. If the nucleus at
H2 has anR spin the bd orbital will have aâ surplus spin density
around H2 and anR surplus spin density at X. ThisR surplus
spin density is concentrated in the valence region of X. The
corresponding extra exchange potential attractsR density from
the lp orbital, which is withdrawn among others from the inner
core region. The spin density of the lp orbitals at X is shifted
toward theâ spin, and the (lpr bd) contribution to the FC
term is negative. The lp terms, in contrast, have a surplusâ
density in the valence region, and the spin density of the bd

orbital at X is shifted towardR, i.e., the (bdr lp) term is
positive, and the sign of the (bd,lp) contribution is not evident.
However, the bd orbital responds much more strongly by the
nuclear spin at H2 than the lp orbital. Hence, the (lpr bd)
effect is stronger than the (bdr lp) term, and (bd,lp) is negative.
The argument holds in full analogy for the (bd,ob) term. As
regards the (lp,ob) term, the lp and ob orbitals both attractâ
density in the valence region of X and shift thus the spin density
of each other at X towardR, which accounts for the positive
sign of the (lp,ob) contributions.

The (bd,c) contributions become more positive as the size of
the core increases. Although they are negative for all second-
row X atoms, they are positive for X in the fourth row. Besides,
the (bd,c) contributions become more negative with increasing
electronegativity of X. One has to keep in mind that the direct
response of the c orbital to the nuclear spin at H2 is negligible;
i.e., c responds to the nuclear spin only by mediation of the
other orbitals, above all the bd orbital. The results give at hand
that the details of this response, and the feedback of the
perturbed c orbital to the bd orbital, depend on the size and
structure of the core at X.

3.2. Magnitude of the Orbital Contributions to the Fermi
Contact Term. All FC contributions except those for H2Se,
HCl, and HBr are calculated to be positive. The FC terms
increase with increasing atomic number in group IV but decrease
in groups V, VI, and VII of the periodic table. Within a period
of the periodic table a decrease is found (exception CH4 and
NH3: 38.5 and 38.8 SI units, Table 1) The calculated trends in
the FC contributions can be explained by comparing the positive
bond contributions with the negative lp, (b,lp), ob, and (b,ob)
contributions. Among the negative contributions the lp and (b,-
lp) contributions play the strongest role reducing the positive
bond orbital contributions. Together with the other negative
orbital contributions, they annihilate the effect of the positive
bond contributions and lead to a decrease of the FC term within
a group. They become even negative for SeH2 (-3.2), ClH
(-2.8), and BrH (-39.9 SI units, Table 1). However, in group
IV where no lone pair contributions exist, the FC term increases
with increasing atomic number. For the purpose of explaining
these trends, in Table 6 we have listed the bond orbital or lone
pair orbital density at the coupling nuclei calculated according
to eq 19 together with atom polarizability and electronegativity
of atom X of molecules XHn.30

The bond orbital contributions to the FC term increase in
the first period with increasing electronegativity but possess a
minimum for second and third period atoms X in group V (PH3

and AsH3, Table 1, second column). These trends reflect the
influence of two opposing effects, namely electronegativity and
polarizability. In the first period the polarizability plays only a

TABLE 5: Total Orbital Contributions to the One-Bond Coupling Constants 1K(XH) in XH n Moleculesa

type 1K(bd) 1K(lp) 1K(ob) 1K(c) 1K(bd,lp) 1K (bd,ob) 1K(bd,c) 1K(lp,ob) 1K(lp,c) 1K(ob,c) totalb expc

CH4 51.36 -2.10 -0.02 -7.33 -2.36 -0.36 39.19 41.3
SiH4 115.84 -12.42 -0.14 -27.3 2.80 -0.59 78.20 84.9
GeH4 322.79 -38.18 -0.24 -96.2 6.79 -1.18 193.77 232
NH3 77.09 -3.36 -2.35 -0.02 -16.32 -9.48 -5.76 2.47 -0.39 -0.33 41.54 46.33 50
PH3 95.39 -19.00 -3.89 0.17 -34.67 -12.76 -0.43 3.46 -0.80 -0.43 27.37 32.01 37.8
AsH3 206.32 -52.04 -7.99 0.19 -98.90 -31.76 2.20 8.15 -1.23 -0.12 24.80 33.11 45
OH2 110.54 -14.86 -2.62 -0.04 -42.01 -10.24 -9.64 5.41 -0.39 -0.29 34.31 48
SH2 132.10 -33.88 -3.49 0.40 -65.24 -12.56 -1.38 4.67 -1.44 -0.10 19.08
SeH2 262.90 -78.34 -6.88 0.65 -155.83 -27.05 1.91 9.41 -1.73 -0.07 5.00 28.4
FH 146.40 -26.93 -0.05 -77.28 -12.74 -5.08 26.33 46.9
ClH 177.01 -53.39 0.77 -110.07 -1.76 -2.58 10.00 16.43 32
BrH 326.13 -108.24 1.22 -235.23 1.54 -2.29 -16.86 -7.67 (()19d

a All K values in SI units [1019 kg m-2 s-2 Å-2] calculated at the CP-DFT/B3LYP/6-311G(d,p) level of theory. The following isotopes are used
in the calculations:13C; 29Si; 73Ge; 15N; 31P; 75As; 17O; 33S; 77Se;19F; 35Cl; 81Br. b Second entry corresponds to total1K(XH) values obtained with
Dunning’s cc-pV5Z basis set.c Taken fromr ref 3b.d Sign uncertain.

TABLE 6: s-Density at Nuclei X and H As Given by Bond
and Lone Pair LMO of XH n, Polarizability r(X), and
Electronegativity ø(X)a

XH bond lone pair ø(X)

type X H X H RX Pauling Allred-Rochow

CH4 0.516 0.217 1.76 2.55 2.50
SiH4 0.779 0.197 5.38 1.90 1.74
GeH4 2.035 0.188 6.07 2.01 2.02
NH3 0.814 0.217 1.566 0.000 1.10 3.04 3.07
PH3 0.795 0.194 3.265 0.003 3.63 2.19 2.06
AsH3 1.658 0.185 8.074 0.004 4.31 2.18 2.20
OH2 1.469 0.208 3.949 0.004 0.80 3.44 3.50
SH2 1.353 0.186 5.511 0.006 2.90 3.44 3.50
SeH2 2.549 0.179 11.797 0.007 3.77 2.55 2.48
FH 2.903 0.186 7.850 0.015 0.56 3.98 4.10
ClH 2.434 0.172 8.902 0.013 2.18 3.16 2.83
BrH 4.088 0.167 17.109 0.013 3.05 2.96 2.74

a The s-density is given in e/a0
3; the polarizability, in Å3.30 See text

for the calculation of thes-density at the nucleus.
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Figure 1. Contour line diagram of (a) the C-H2 bonding LMO of CH4, (b) the first-order C-H2 bonding LMO (perturbation at H2), (c) the FC
spin density distribution of the bonding C-H2 orbital, (d) the Si-H2 bonding LMO of SiH4, (e) the first-order Si-H2 bonding LMO (perturbation
at H2), and (f) the FC spin density distribution of the bonding Si-H2 orbital. H2 is located at the right and H3 at the upper left of the C(Si) atom.
Solid contour lines indicate the positive orbital phase (spin density distribution, i.e., moreR-density), dashed contour lines the negative orbital
phase (spin density distribution, i.e., moreâ-density). B3LYP/6-311G(d,p) calculations.
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Figure 2. Contour line diagram of (a) the F-H2 bonding LMO of FH, (b) the first-order F-H2 bonding LMO, (c) the FC spin density distribution
of the bonding FH orbital, (d) the F lone pair LMO of FH, (e) the first-order F lone pair LMO, and (f) the FC spin density distribution of the lone
pair orbital of F in FH. The perturbation is always at H2. Solid contour lines indicate the positive orbital phase (spin density distribution, i.e., more
R-density); dashed contour lines, the negative orbital phase (spin density distribution, i.e., moreâ-density). The sign of orbital and spin density at
the coupling nuclei are given below each diagram. B3LYP/6-311G(d,p) calculations.
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Figure 3. Contour line diagram of (a) the O-H2 bonding LMO of OH2, (b) the first-order O-H2 bonding LMO, (c) the FC spin density distribution
of the bonding O-H2 orbital, (d) the Se-H2 bonding LMO of SeH2, (e) the first-order Se-H2 bonding LMO, and (f) the FC spin density distribution
of the bonding Se-H2 orbital. The perturbation is always at H2. Solid contour lines indicate the positive orbital phase (spin density distribution,
i.e., moreR-density); dashed contour lines, the negative orbital phase (spin density distribution, i.e., moreâ-density). The sign of orbital and spin
density at the coupling nuclei are given below each diagram. B3LYP/6-311G(d,p) calculations.

Transmission Mechanism of Spin-Spin Coupling Constants J. Phys. Chem. A, Vol. 107, No. 36, 20037051



Figure 4. Contour line diagram of (a) the lone pair LMO at O of OH2, (b) the first-order lone pair LMO at O of OH2, (c) the FC spin density
distribution of the lone pair orbital at O of OH2, (d) the lone pair LMO at Se of SeH2, (e) the first-order lone pair LMO at Se of SeH2, and (f) the
FC spin density distribution of the lone pair orbital at Se of SeH2. The perturbation is always at H2. Solid contour lines indicate the positive orbital
phase (spin density distribution, i.e., moreR-density); dashed contour lines, the negative orbital phase (spin density distribution, i.e., moreâ-density).
The sign of orbital and spin density at the coupling nuclei are given below each diagram. B3LYP/6-311G(d,p) calculations.
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minor role (see Table 6) so that the influence of the electrone-
gativity dominates. The larger the electronegativity of X is, the
larger is the contraction of s-density toward the nucleus (see
Table 6) and the larger becomes the spin polarization at the
nucleus. An electronegative atom transmits the spin polarization
caused by the magnetic moment of the nucleus and mediated
by the valence bond density in a better way to the proton than
a more electropositive central atoms X does.

Although the contact density is a necessary condition for a
large FC term, the polarizability is a sufficient condition for
the transmission of spin polarization from one nucleus to the
other. The polarizability changes for second row atoms X from
a large (5.4 Å3) to a relatively small value (2.2 Å3) for increasing
atomic number, which means that the transmission of spin
polarization is weakened. Hence, the minimum for the bond
orbital contribution (95.4 SI units, see Table 5) of1K(PH) is a
result of a strong decrease in the polarizability of X (from 5.38
to 3.63 Å3) and a moderate increase of the electronegativity
(from 1.90 to 2.19, Table 6). The same argument applies to the
third period. They lead to a parabola behavior of the bond
contribution values to1K(X,H): SiH4, 115.8; PH3, 95.4; H2S,
132.1; HCl, 177.0 or GeH4, 322.8; AsH3, 206.3; H2Se, 262.9;
HBr, 326.1 SI units (see Table 5, second column).

Considering the bond contributions within a group, one
realizes that they do not always follow the s-density calculated
at the nucleus X. The s-densities of the bond orbitals have a
minimum for second period atoms X (provided X has an electron
lone pair) whereas the orbital contributions steadily increase
within a group with increasing atomic number. The latter effect
can be explained by a three- to 4-fold increase of the polariz-
ability of X accompanied by a moderate decrease (by a factor
1.2 to 1.4) of the electronegativity (Table 6).

The trend in the s-density of the bond orbital at X can be
explained in the following way. The bond orbital penetrates with
its tail the core region where it is contracted in the vicinity of
the nucleus. The degree of contraction can be estimated by the
effective atomic charge of a nucleus (calculated according to
Slater rules) experienced by a valence electron occupying the
bond orbital. The effective atomic number increases from the
second to the third period by an amount more than twice as
large as the increase from the first to the second period (for

example: F, 4.15; Cl, 11.25; Br, 29.25). Hence the contraction
of the bond orbital in the core region should follow this trend,
thus yielding higher s-densities from period 1 to periodn (n >
1). At the same time, the p-character of the bond orbital increases
while its s-character decreases with increasing atomic number
in a group. This is responsible for the decrease in the HXH
bond angle and can be traced back to a second-order Jahn-
Teller effect. The two opposing effects (orbital contraction in
the core region and decrease of the s-character of the bond
orbital) lead to a minimum in the s-density at the nucleus for
second period atoms (relative to the s-density of the corre-
sponding first and third period atoms in a group; Table 6).

The absolute magnitude of the lone pair contributions to the
FC term follows the polarizability of the corresponding atom
X, which depends on its position within a group of the periodic
table; however, it follows also the electronegativity of X, which
increases within a period of the periodic table. In this respect
one might argue that the number of lone pairs increases from
one (group V) to three (group VII). However, each additional
lone pair orbital is ofπ-type character (density at the nucleus
is zero; no Fermi contact interaction) and, accordingly, their
influence on the FC term is nil. This is different for the con-
tributions resulting from other X-H bonds. There are three for
X being a group IV element, two for X being in group V, and
just one for X being a group VI element. Considering this, the
polarizability effect seems to be the most important for the ob
contributions.

The magnitude of the bond orbital contributions is larger than
that of the lone pair contributions, which in turn are larger than
the ob contributions. The core contributions are the smallest
(close to zero, Table 1) because the tails of these orbitals hardly
reach the H nucleus. We note that other orbital decomposition
schemes fail to give reasonable core contributions.15,16The in-
teraction contributions follow the trends found for the one-orbital
contributions. Hence, the magnitude of the (b,lp) contributions
is much larger than that of the (b,ob) or (lp,ob) contributions
whereas other contributions, including core orbitals, are negli-
gible.

In conclusion, sign and relative magnitude of one- and two-
orbital contributions to the FC term of1K(XH) can be explained.
For the sign of a particular orbital contribution one has only to
consider the nodal behavior of the corresponding zeroth-order
LMO, which leads to the phase at the coupling nuclei, deter-
mining also the signs in the first-order orbital and by this the
signs of the spin density contribution at the nuclei. The product
of the calculated spin densities at the nuclei for a given LMO
provides a direct measure of the magnitude of the FC orbital
contribution. Electronegativity and polarizability of X help to
rationalize the relative magnitude of an orbital contribution.

3.3. Magnitude and Sign of the Orbital Contributions to
PSO, SD, and DSO Terms.Distinct from the FC and SD terms,
the PSO and DSO terms are mediated by orbital currents rather
than spin polarization. Still, there are parallels between the PSO
and FC coupling mechanisms, and the PSO coupling can be
discussed in terms of zeroth- and first-order orbitals in a similar
way as the FC coupling.

The magnitude of the PSO orbital contributions is in general
much smaller than that of the corresponding FC contributions.
All orbital interaction terms are negligible for the system inves-
tigated. For the PSO term, only the portion of exact exchange
used in the exchange functional leads to a coupling in the
CPDFT equations and the to two-orbital contributions.18 The
B3LYP functional uses only 20% exact exchange,22 which ex-
plains the small two-orbital terms. Among the one orbital terms

Figure 5. Extended Dirac models of the orbital contributions to the
SSCC1K(XH). Large arrows indicate theR- andâ-spin of the nucleus;
small arrows, theR- andâ-spin of the electron. The perturbed nucleus
is the H2 in bold print, which is assumed to have alwaysR-spin and
which is the starting point of spin polarization. Solid arrows refer to
specific electrons, but dashed arrows indicate the spin density distribu-
tion rather than belonging to single electrons. The diffuse back lobes
of the hybrid orbitals are indicated by large ellipses. Note that only
the spin density at the position of the nuclei is schematically represented,
however not that in other parts of the molecule.
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the lone pair contributions are most important followed by the
other bond, bond, and core contributions. The PSO one-orbital
contributions have, apart from a few exceptions, always the
opposite sign than the FC one-orbital contributions. Because
the positive lp contribution dominates the PSO term, the latter
is sizable and positive for those XHn molecules, which possess
one or more lone pairs.

The sign of the PSO term can be explained by considering
that the PSO operator (eq 6) implies that the nabla operator is
applied to the first-order orbital. For a perturbation at H2 the
nodal structure of all first-order orbitals is similar, as should be
the nodal structure of the gradient of the first-order orbitals.
The signs at X and H are the same for the first-order orbitals
when X is in the first period, but opposite in the bond region
(see above). The gradient of the first-order orbitals changes sign
in the bond region and leads in consequence to opposite signs
at the nuclei. Hence, the positive FC bond orbital contributions
imply negative PSO orbital contributions and the negative FC
lone pair contributions positive PSO lone pair contributions.

Whereas for the FC contribution, occupied s-orbitals lead to
large contributions, occupied pπ-orbitals (or unoccupiedπ*
orbitals) yield large contributions in the case of the PSO term.
The nucleus interacts via the dipole field of its magnetic moment
with the field generated by the movement of the electrons in a
pπ-orbital. This leads to the induction of orbital currents, which
have for DSO and PSO terms opposite directions weakening
or strengthening the magnetic field of the nucleus. The PSO
interaction is large for the pπ-lone pair orbital(s) in XH2 and
XH, where again polarizability and electronegativity play an
important role. This can be rationalized in orbital language by
considering that the PSO operator is an angular momentum
operator and that excitations lp(X)f σ*(XH), σ(XH) f
Rydberg-p(X), etc. play an important role. With increasing
electronegativity, the virtual orbitals adopt lower energies, thus
increasing the corresponding PSO orbital currents. Alternatively,
one could say that the magnitude of the PSO orbital interaction
increases because a contracted pπ-orbital interacts more strongly
with the dipole field of the nucleus. A larger polarizability
implies more diffuse occupied orbitals and a higher orbital
energy and again a larger PSO orbital current induced by the
nuclear spins. Within a group, electronegativity and polariz-
ability have opposing influences so that again a minimum of
the PSO orbital contributions (lp, b, or ob) is found for X being
a second period atom.

There are only a few SD orbital contributions that are larger
than 1 SI unit, namely, the bond orbital and lone pair orbital
contributions of those XHn molecules that possessπ-type lone
pair orbitals and whose bond orbitals are dominated by p-con-
tributions. For the SD term the dipole fields of the coupling
nuclei interact via the electron density; i.e., the spin dipole field
of the perturbed nucleus H leads to a spin polarization of the
electrons in orbitalk, which has to readjust at the position of
nucleus X to keep the antisymmetry of the wave function.
Hence, the spin dipole field of nucleus X experiences the change
in the spin polarization caused by the dipole field of H and
mediated by the spin density of orbitalk. Considering the form
of the dipole field of a nucleus, a p- or d-orbital can much better
transmit the SD effect than an s-orbital. Also, the two-orbital
effects should only be large in that case, in which the coupling
nuclei possess both occupied p-orbitals. For XHn, this is not
the case and therefore the interaction terms are all relatively
small.

The SD bond orbital and SD lone pair orbital contributions
have the same signs as the corresponding PSO contributions;

i.e., bd and lp contributions have opposite signs. Because they
are of similar magnitude, they cancel each other out to a large
extent, thus leading to relatively small total SD contributions.
There is again a minimum in the orbital contributions for X
being an element of the second period, which indicates the
influence of two opposing effects, namely, electronegativity and
polarizability of atom X on the SD bond orbital and SD lone
pair orbital contributions.

Due to the large number of individual contributions and the
more complicated structure of the first-order KS operator, the
sign and magnitude of the SD terms cannot be discussed as
easily as those for the FC terms. One can, however, make
plausible that SD and FC terms have opposite signs: The nuclear
magnetic field for the SD term is partly opposite to that of the
FC term. Hence, the SD contribution should partly compensate
the FC contribution. It is noteworthy that this partial compensa-
tion takes place for each orbital separately, not only in the sum.

DSO orbital contributions are all negligible (Table 4) although
some of the bd and lp contributions are in the range of 1 SI
unit. Because the DSO term depends just on the zeroth-order
density, it can only be large in those cases in which, due to a
strong electronegativity of X, the density is contracted. Ac-
cordingly, the DSO orbital contribution should increase in
magnitude from left to right in a period and from bottom to top
in a group, thus yielding the largest values for FH (Table 4).
But even then the orbital contribution is relatively small in view
of the small zeroth-order density at the H nucleus (Table 6).
Again, bd and lp LMO contributions have opposite signs (Table
4). Because they are also of comparable magnitude, they largely
cancel each other so that the total DSO orbital contributions
are all close to zero.

As has been shown in ref 18, a spherical charge distribution
around one of the two coupling nuclei makes only a little
contribution to the DSO part of the SSCC. This explains
immediately that the c contributions to the DSO terms are
negligible (see Scheme 2). The bd, ob, and lp charges are
distinctly nonspherical around X. However, their sum is
approximately spherical around X, and the parts of the bd and
ob densities located at the H atoms are s-dominated and thus
spherical as well. This explains that the lp and bd contributions
nearly cancel each other. Generally, those parts of the charge
distribution that are inside the sphere around the axis X-H2
make negative contributions to the DSO terms, and charges
outside this sphere make positive contributions.18 As shown in
Scheme 2, this implies that the bd contributions are negative,
whereas the lp and ob contributions are positive (the nonspheri-
cal part of the ob contributions is outside the sphere).

SCHEME 2: Signs of the Orbital Contributions to the
DSO Term of the SSCCa

a Electron density inside the sphere around the X1H2 bond leads to
a negative contribution; electron density outside this sphere leads to a
positive contribution to the DSO term.
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3.4. Trends in the Total NMR Spin-Spin Coupling
Constant. The largest contributions to1K(XH) result from the
FC term and the PSO term whereas the total SD and DSO orbital
contributions can be neglected in a discussion of the trends in
the calculated1K(XH) values. For XHn molecules without lone
pair electrons (X from group IV) the SSCC1K(XH) is clearly
dominated by the FC term, which in turn is dominated by the
bond orbital contribution (CH4 total 39.2, FC 38.5, FC(bd) 52.1;
SiH4 total 78.2, FC 78.3, FC(bd) 116.1; GeH4 total 193.8, FC
194.3, FC(bd) 322.7 SI units; see Tables 1 and 5). The
dependence of the bd orbital contribution on electronegativity
and polarizability is equally valid for the dependence of the
total SSCC1K(XH). The negative ob and (b,ob) contributions
lead to the actual value of1K(XH).

The lp contributions change the trend in the calculated SSCCs.
The latter no longer increase within a group but they decrease.
For the XH3 molecules, the influence of the (positive) PSO
orbital contributions is moderate. Decisive are the negative FC-
(lp) and FC(bd,lp) contributions, which revert the trend in the
positive FC(bd) orbital contributions so that a decrease of the
SSCC1K(XH) with increasing atomic number in a group results.

For the XH2 molecules, which possess aπ-type and aσ-type
lone pair the influence of the positive PSO orbital contribution
becomes decisive. It does not change the trend determined by
the FC orbital contributions, but it changes the negative SSCC
1KFC(SeH) into a positive SSCC1K(SeH).

For the XH molecules, the PSO term becomes more important
than the FC term for FH and ClH whereas for BrH the (negative)
FC term is more important, leading to a negative value of
1K(BrH). One might criticize this interpretation because of the
large deviation of calculated from measured1K(XH) values (see
Table 5). Therefore, we have repeated SSCC calculations with
Dunning’s cc-pVQZ basis set. In this way, the deviation between
calculated and measured SSCCs could be reduced by 50%
(Table 5). Still some of the calculated1K(XH) values differ by
12-20 SI units (Table 5). Four different effects can be
responsible for these deviations. (a) It is well-known that basis
sets for which the inner shell parts are augmented by additional
s-functions or, alternatively, decontracted are better suited for
obtaining high-accuracy values of SSCCs.31 (b) DFT may
include important dynamic and nondynamic correlation needed
for the calculation of SSCCs. However, this does not imply that
all electron correlation effects are included that guarantee a
reliable description of SSCCs. (c) In a recent investigation of
NMR chemical shieldings, Filatov and Cremer32 have shown
that the relativistic changes in both diamagnetic and paramag-
netic contributions are substantial. The former are caused by a
relativistic contraction of s- and p-orbitals of the heavy atoms
and the latter are due to a secondary effect, namely, the
expansion of d- and f-orbitals. The contraction of the s-orbitals
will lead to substantially larger SSCC1K(XH) values and
explains why nonrelativistic calculations underestimate the
SSCCs. In the case of the XHn molecules with lone pair
electrons, the PSO term will have substantial relativistic changes
where, however, trends are difficult to foresee. (d) Finally, we
have to emphasize that measured SSCCs represent vibrational
averages, which differ considerably from SSCCs calculated for
the equilibrium geometry. Calculations show that differences
as large as 5% can be observed for1J(XH) SSCCs.33

4. Conclusions

Trends in calculated and measured one-bond SSCC1K(XH)
values for twelve XHn hydrides (X) C, Si, Ge, N, P, As, O,
S, Se, F, Cl, Br) have been explained using orbital contributions

obtained with the J-OC-PSP approach. The sign and magnitudes
of the orbital contributions have been rationalized with the help
of the Fermi contact spin density distribution, the s-density of
an orbital at the nucleus, the electronegativity, and the polar-
izability of the central atom X.

(1) The one-bond SSCC1K(XH) is influenced in sign and
magnitude by several one-orbital and two-orbital contributions,
which behave differently with atomic numberZ. Therefore, it
is almost impossible to rationalize trends in measured one-bond
SSCC1K(XH) values of XHn hydrides by one simple concept,
as has been repeatedly tried in the literature.

(2) The assumption that the FC term leads to the most
important contribution to the SSCC1K(XH), which is often
found in the literature, cannot be confirmed. The PSO term
becomes equally important in the case of heteroatoms X with
electron lone pairs. The DSO and SD terms are only small
because bond and lone pair contributions have opposite signs
and lead to a large cancellation of these contributions.

(3) With the help of the Fermi contact spin density distribu-
tion, the sign of the FC orbital contributions can be predicted
for the one-orbital terms. In the case of the two-orbital terms,
sign predictions are also possible but require that the relative
magnitude of the terms (x r y) and (y r x) contributing to
(x,y) can be estimated when they possess different signs. Sign
predictions are possible in the case of SSCC1K(XH) because
of the regular nodal structure of zeroth- and first-order LMO.
All first-order LMOs are dominated by the antibonding X-H2
LMO (provided H2 is perturbed) and therefore have always the
same nodal structure. The same sign relationships are found
for the dominant orbital contribution irrespective of the period
and the group atom X is located in.

(4) The magnitude of the FC term of1K(XH) is strongly
influenced by a positive bond LMO contribution, which
increases within a group and the first period but shows a
parabola behavior within the second and third period. It is
demonstrated that an efficient spin coupling mechanism requires
both a large electronegativity (leading to a large contact spin
density at the nucleus) and a large polarizability of X (leading
to an effective transmission of spin polarization). The increase
of the bond orbital term within a group results from an increase
in the polarizability, and that within a period from an increased
electronegativity. In period 2 and 3 the two effects are
counteractive, thus leading to a parabola behavior of the bond
orbital contributions to the FC term.

(5) The lone pair and (bd,lp) contributions to the spin-coupling
mechanism are the most important for the FC term. They are
both negative, which can be explained by inspection of the FC
spin density distribution (see Figure 5). The negative (bd,lp)
two-orbital contribution is the sum of a large negative lpr bd
and a smaller positive bdr lp contribution. Again the calculated
trends in the lp terms can be explained by the increasing
polarizability of X within a group and the increasing electrone-
gativity of X within a period.

(6) The PSO term will be only large if X is a heteroatom
because only theπ-type lone pair orbitals are significantly
involved in the PSO spin-spin coupling mechanism. The sign
of the lp one-orbital contribution is always positive, as can be
predicted considering the gradient of the first-order orbitals.
Again, increasing polarizability and increasing electronegativity
of X determine the magnitude of the PSO lp-term where,
however, also an increasing number of occupiedπ-type lone
pair orbitals plays an important role.

(7) Analysis of the SD orbital contributions to the spin-spin
coupling mechanism can be simplified by realizing that the
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nuclear magnetic field for the SD term is partly opposite to
that of the FC term. Accordingly, the SD orbital contributions
have a sign opposite to that of the corresponding FC orbital
contributions, thus partly compensating the FC term. Consider-
ing the form of the dipole field of a nucleus, an occupied p- or
d-orbital can much better transmit the SD effect than an occupied
s-orbital. The bd and lp contributions have opposite signs.
Because they are of similar magnitude, they cancel each other
out to a large extent, thus leading to relatively small total SD
contributions.

(8) The DSO contributions just depend on the zeroth-order
electron density, which increases at the nucleus with increasing
electronegativity. A spherical charge distribution around one
of the two coupling nuclei makes only a little contribution to
the DSO part of the SSCC. The bd, ob, and lp charge
distributions around the nucleus X are nonspherical. However,
their sum is approximately spherical around X so that the lp
and bd contributions nearly cancel each other. Generally, those
parts of the density distribution that are inside (outside) a sphere
around the axis X-H2 lead to negative (positive) contributions
to the DSO terms, thus explaining why the bd contributions
are negative, whereas the lp and ob contributions are positive
(see Scheme 2).

(9) The largest contributions to1K(XH) result from the FC
term and the PSO term whereas the total SD and DSO orbital
contributions can be neglected. For XHn molecules without lone
pair electrons (X from group IV) the SSCCs1K(XH) is clearly
dominated by the FC term, which in turn is dominated by the
bond orbital contribution. The lp contributions change the trend
in the calculated SSCCs. The latter no longer increase within a
group, but they decrease. For the XH3 molecules, the negative
FC lp and FC (b,lp) contributions are decisive because they
reverse the trend in the positive FC bd orbital contributions so
that a decrease of the SSCC1K(XH) with increasing atomic
number in a group results. For the XH2 molecules, the positive
PSO orbital contribution becomes decisive. It does not change
the trend determined by the FC orbital contributions, but it
changes the negative SSCC1KFC(SeH) into a positive SSCC
1K(SeH). For the XH molecules, the PSO term becomes more
important than the FC term for FH and ClH whereas for BrH
the (negative) FC term is more important, leading to a negative
value of1K(BrH).

(10) Calculated SSCC1K(XH) values are improved by using
Dunning’s cc-pVQZ basis set. The remaining differences
between calculated and measured values can be due to (a)
additional basis set inefficiencies, (b) lack of higher order
correlation effects, (c) relativistic effects, or (d) vibrational
effects.
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